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are studied in terms of the kernel h. The existence of an appropriate modifi-

cation of the kernel h enables one to use results from stable measures on

Banach spaces in studying of X. Bounds for the moments of the norm of sample

paths of X are obtained. This yields definite bounds for the moments of a

double u-s'table integral. Also necessary and sufficient conditions for the

absolute continuity of sample paths of X are given. Along with the above

stochastic integral representation of stable processes, the representation of

stable random vectors due to LePage, Woodrooffe and Zinn is extensively used and

the relationship between these two representations is discussed.
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1. Introduction.

The Central Limit Theorem and the stability property provide the basic

reasons for regardinq stable processes as a natural generalization of Gaussian

ones. As an analog to the well-known spectral representation of stationary

Gaussian processes, every symetric cz-stable (SoS) stochastic process with

parameter set T has a version of the form

(1.1 ) X(t) = sh(ts)dM(s), tET

(cf. [I], [12], [29], [30], [11] and the discussion of the history of (1.1) in

[9]) and in the stationary case one can choose t - h(t,) as an orbit of a group

of isometries on LO (see [9]). Here M is an independently scattered ScS

random measure on an abstract measurable space (S,A).

There are two special cases of (1.1) that have been extensively studied:

harmonizable processes given by

X1 eitd(
(1 .2) X (t) = s) , t00 s-. :

(with appropriate modifications if t runs over a group) (cf. [101, [19], [6],

[17], [2], [23] and [32]) and moving averages

(1.3) X(t) = g(t-s)dM(s), tEIR

(cf. [6], [25], [4] and [2]).

In this paper we study general SaS processes given by (1.1). They are

determined by two quantities: the kernel h and the control measure m of M.

In contrast with the approach taken in [9] and [2], which relies on the

L L

* properties of the mapping Tt + h(t,.) E Le, we relate path properties of X

* . * - .'-*. * .-. . . . : . :: . .
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with properties of the mapping S3s h(.,s) E T( CT) which plays the crucial

role here. More specifically, we are concerned with processes havinq sample

paths in a separable Banach space V(T) of functions defined on T. We show

that the kernel h in (1.1) admits a modification with all sections h(.,s) in

V(T) (Section 5). Therefore we may always replace (1.1) by

(1.4) X = h(.,s)dM(s),

S

where en the right-hand side we have a stochastic integral of the V(T)-valued

function s - h(.,s). Such stochastic integrals of Banach space valued functions

have been investigated in [26] for infinitely divisible random mea-

sures. In the present stable case the construction can be simplified and this

is done at the beginning of Section 3. Then we establish the relationship

between the stochastic integral representation of stable random vectors in

Banach spaces and the series representation due to LePage, Woodrooffe and Zinn [131. .

In Section 4 we use some ideas of Marcus and Pisier [17] and an adaptation

of Hoffmann-J~rgensen's inequality due to Gine and Zinn [8] to obtain bounds

for moments of the norm of X(.). We also introduce a complete norm on the

space of all vector valued functions f for which ffdtl exists, similar to Pisier's

norm for CLT [21]. Theorem 4.5 establishes the role of simple functions in

the series representation of stable random vectors.

In Section 6 we apply the results of Sections 5 and 4 to characterize

the absolute continuity of sample paths of SaS processes. Earlier the absolute

continuity of sample paths has been investigated by Cambanis and Miller [3]

*" in terms the so-called covariation function, only for the case a > 1.

Continuing the above approach, we obtain in Section 7 definitive bounds

for moments of a double c-stable stochastic inteqral. We also nive a short and

.'- *.-.-...*

• "".. .. .. .. .. .. .. .. .. .. ........ .. .... .x,-%".' "
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new proof of a Fubini-type result which allows the interchanging of stochastic

and usual integration (cf. [4) Theorem 4.6 and [20] Lemma 4.4).
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2. Preliminaries and notation.

A systematic treatment of stable measures on Banach spaces one can find in

Linde [14] and we shall refer to this book for basic definitions and facts. The

characteristic functional of an ScS p.m. 1 on a separable Banach space B can be

written in the form

(2.1) p(x') = exp(- l<xx'>ljda(x)),
faU

X' E B', where 3U is the unit sphere in B and a is a finite symmetric measure

on 3U. a is uniquely determined by p and is called the spectral measure of pj

(cf. Theorem 6.4.4 [14]). Further, for every p E (O,) fB
1 lxi lPdv(x) < and

for every p,q c (0,)

(2.2) ( j!xjIPd(x))1/p  ( lxIqdp(x)) I/q
~B C B"-

where C = C(a,p,q) (we shall write L ~ R if C-R < L < CR and C =C(a,b,...)
C

means that a positive constant C depends only on parameters a,b....). If i

is given by

*(x' = exp (-B l<x,x'>jdo(X)),.

00
x' B', where a 0 is a (non-necessary symetric) Borel measure on B, which is

a-finite on B'{O}, then fpllxlldao(x) < and for every p E (0,a)

(2.3) (B llxlI(doo(x)) l/' < C(f lx"dx)
• B - B" - "

where C : C(a,p) (cf. Proposition 6.4.5 and Corollary 7.3.5 in [14]).

Let A be a ,-ring of subsets of a non-empty set S (i.e. a rino that is
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s5

closed under countable intersections). A stochastic process {M(A): A E Al is

said to be an ScS tandom mea,6uwe if

(i) for every sequence {An) c A of pairwise disjoint sets withn
U A n A the series Z M(A n) converges in probability to M(U A n);

(ii) M(AI), M(A2 ),...are independent, provided A E A are pairwise1 2 n

disjoint;

(iii) M(A) has an SaS distribution for every A E A.

It follows that the characteristic function of M(A) can be written in the

form

E exp (it M(A)) = exp (-m(A)Itlci), t E IR, A E A,

where m is a non-negative measure on A. m is called the controt meaAsue o6 M.

The existence of an ScS random measure M with a given control measure m p

follows by Kolmogorov's Consistency Theorem. In particular, if X(s), s > 0 is

an independent stationary increment process such that E exp (itX(s)) = exp(-sitio),

then M defined on intervals by M((a,b]) = X(b) -X(a) extends to an SaS random

measure on the 6-ring of all Borel bounded subsets of [0,-) with the Lebesque

measure as the control measure. (see Prekopa [22]).

Throughout this paper we shall assume that (S,A) satisfies the following p
condition: there exists a sequence {An I c A such that u A = S. Then everyn n

countably additive finite measure on A extends uniquely to a a-finite measure

on o(A) and as a consequence every control measure of an ScS random measure M p

is the restriction to A of a a-finite measure m defined on o(A). To avoid

trivialities we shall always assume that m is not zero.

For every real function f c L(S,o(A),m) the stochastic inteqral fsfdM is

defined as the limit in L of integrals of simple functions and satisfies

* * -* . ~ .. ** ~ -. .m m i~ ~: -. . - .
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the equality'AI fdMIP) I/P = C( fld)/'

S S

where C : C(ot,p), p < a (cf. [1], and [29]). If B is a finite dimensional

Banach space, then for f E LB(S,a(A),m)

(2.4) (E II fdMII p)
l"p  Cf jIfIIcdm)l/cc

S C S

where C depends on a and p and additionally on dim B and 11-11. Banach spaces in

which (2.4) holds for all simple functions with a universal constant C (and

thus fsfdM can be defined for all f E Lo) have been characterized by Marcus

and Woyczynski [18]. This is the class of spaces of stable type Ct, including

in particular Hilbert spaces and LP-spaces for p > a (see [14] for further

references).

!. . .. . . . . _ -.. .-. : -.- , . ,- .- ..- . .- . .i- -. :i.: .-.- -- ... 7 / ! . . . . . -. . : - , . ... ,,. .- _._ _-_ _. ,_ _., . - -. . . .. .. - .:
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3. Stochastic integral and series representation of ScS random vectors in

Banach spaces.

Let M be an ScS random measure on (S,A) with the control measure m. Let Bsimple

be the space of all simple measurable functions f: (S,a(A)) - (B, Borel (B))

such that {s: f(s) t O} E A. As usual functions equal m-a.e. are indistinguish-

able. For every simple f = xjI9 xt 0, Aj E A we setB•FAyf E B A

T fdM = ExjM(Aj)
S

and

(3.1) X(f) = (E 1 fdMJJP)I/P9

S
{simple Sic dMs

where p E (0,a). X ,p is a well-defined quasi norm on LiB Since ffdM is

a B-valued SciS random vector such that

(3.2) E exp(i < ffdMx'>) = exp (ff(s),x>Kcdm(s)),

x' E B', inequality (2.3) yields
(3.3) X o,p(f) > C(f I Jf(s)J I' dm(s)) I1/O t

S
where C = C(ot,p). Moreover, by (2.2) A D A for every p,oc(O,a), where C=C(rx,p,q).r.D C Y,O

Let be a completion of LBimple in X . In view of (3.3) SB can be

realized as a linear subspace of LB = LB(S~o(A),m) as follows:

a {fn}.a simple suhta a nL
SB  If c LB: there exists c LB such that f f in L andB B 'n nrr-B B

lim X ,pf-f ) 0 for some (each) p r (O cx)}.
n,m-o

By (3.1) the mapping f fsfdM extends to an isometric injection of (SBA )

, B , .
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into LP(s,F,P). Values of this extension are also denoted by ffdM and called

the stochastic integral of f with respect to M.

Because of the lack of (2.4) in general, the stable stochastic inteoral can

not be defined for all f's in L (S,c (A),m) and S B is the largest subspace

of L' where ffdM is defined by taking limits of stochastic integrals of

simple functions. Although the dependence of X (f) on f is not given

explicitly, this is a useful quasi-norm which can be effectively estimated in

many concrete examples of B (see e.a. Sections 6 and 7).

We shall frequently use the following particular case of Ito-Nisio theorem

for Banach space valued stochastic integrals which was proven in [26].
S

Proposition 3.1. fcSB akid o r L(ffdM) i a id okleu i fI<f(s),x'>jmdm(s) <

!(,,i c ' iu x' B' akid the cytind,tcaf mcoutie jo gvvcn bq
0-

11o(X) exp {-f I<f(s),x'>ladm(s)1, x' B',

e x tnds r(I Iz Coal tabftu addi t ('Uk Boct yncat.u c It co b.

As a consequence of the above proposition every ScaS p.m. on B has a stochastic

integral representation which follows from the followina (cf. [26], Theorem 6.7):

Prooosition 3.2. I ffd1l: f S} I i a ci'ccd Cio'i a s, b_ c c.,, LP(P,F,P)

* Co'05is~tilici c', SrtS aodom uc to 5~. I ) (S,A ,m) is atc'mfcss~, theit { L ffdM) : f ,S"

ct;Jc -c'c! w'th the .tct ,j a ' SiS )..m. 's or B.

We shall discuss now a different transformation of f which leads to the

same distribution as ffdM. We shall consider a series representation of stable

random vectors due to LePage, Woodroofe and Zinn [13] as it was developed by

Marcus and Pisier [17].

Assume that m(S) < and A = ,i(A). Let I .} be a sequence of positive

a-

S . ...- , ,
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i.i.d. random variables such that P(in > X) = e- , > 0, and put ri=nl

Let {Fj} be an i.i.d. sequence of symmetric random variables such that

EJl a =x 1. Let {.j be a sequence of independent uniformly distributed random

elements in (S,A,m), i.e. P(T. c A) = m(A)/m(S) for every A c A. We assume that

all the sequences {n}, {.} and {T i} are independent of the others.

Let f c SBQ and vi L(f fdM). Then for every x r E'
B

El<f(T i ),'x 'l [M(S)]-I J<f(s),x'>IO dm(s) <

and by Lemma 1.4 in [17] the series

c(c')[m(S)] I/  1 (/ )-I / /a <f(T.),x'>

converqes a.s. to a real SaS random variable with the characteristic function

,(t) = exp(-Itl' fI<f(s),x >Ia dm(s)), where c(ct) = (f x sin xdx)- Icy.
0#

Since (t) = U(tx') and the sequence {r f(T.)} is sign-invariant, Ito-Nisio

theorem (see e.g. [16], 11.4.3. and 11.4.4) yields the a.s. converqence of the

series

(3.4) x(f) c(> )[m(S)] I /  x (F F if(j
j=l

and L(T(f)) = . Conversely, if (3.4) converges a.s. or in P, then the function

x' - exp(-fI<f,x'>I' dm) is the characteristic functional of Z(f) and by

Proposition 3.1. f S"

We summarize above in the following:

Proposition 3.3. Let m(S) < - and A - o(A). Then f ES if and ony if

(f) converges a.s. or in P. Moreover,

L(ffdl) = L(Y(f))

. ...... . . . . . . ....... 1 . ...
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4. Bounds for moments of an ScS stochastic integral.

To obtain the first proposition we argue similarly to Marcus [15] and to

Gine et al. [7].

-1
Since j-r. 0 0 a.s. by Kolmogorov's SLLN, we get that E(f) converges a.s.

if and only if
CO

(4.1) A(f) j f(-[

converges a.s. (see (3.4)). Moreover, by contraction principle we have

2-s/P[E inf (j/r )P/]I/P[m(S)]I/1 (ElA(f)UIP)I/p <

j

1//c

< (Ell (f)[IP I p  <

21/P[E sup (j/r )P/"]I/P[m(S)]I/a(EIIA(f)IIP)I/ p  "

where C = C(a) and p E (0,a). Since E inf (j/r.) p/  > 0 and E sup (j/r.)p/  <

(see [15] and [7] respectively) we get

Proposition 4.1. Let m(S) < c and A=a(A). Then f Sc L( and onta iA A(f)

convte~g a.z. anloL4 1-nLP L o some (each) p E [0,a). Moreover,

i; "(ElIf/fdMIlP) I/ p  - [m(S)] I/O' (EllA(f)llP)I/ p

whvte C : C(c,p), p E (0,ot).

Let us note that even on the real line A(f) need not have the ct-th

moment finite. This is a simple corollary to Proposition 4.2 in [5]. We

shall normalize f to ensure finiteness of all moments of A(f).



" II

Let xo be a fixed point on the unit sphere of B. For every f E LB we0P

define T(s) = f(s)/Ijf(s)Ij if f(s) $ 0 and T(s) = xo otherwise. We define

also a finite measure mf on (S,a(A)) by dmf(s) = Hf(s)IIa1dm(s) (m(S) can

be infinite). Let Mf be an SaS random measure on (S,a(A)) with the control

measure mf. In view of Proposition 3.1 f E SB(SA,m) if and only if

f C LB and f E SB(S,o(A),mf). Moreover

(4.2) L(i fdM)=L( is df)"

fS

Let {trf} be a sequence of independent uniformly distributed random elements
3

in (S,a(A),mf) i.e. P{T A} = mf(A)/mf(S). Let {} be a sequence of i.i.d.

random variables such that P{e = -11 = P{e. = 11 = 1/2 and independent of

(T f By Proposition 4.1 we get

(E f-dMf lIP)/  (1fil / dm)/EIA(E -I)P) I/p"

where C C(a,p) and A() = j-1/a: f(T). Since sup l tl f : 1

j=l 3

A(J) converges in Lr for every r > 0. Using Theorem 3.3 in Sine and Zinn [8]

we obtain for every p E (O,a) and r > 0

(E IA(-f)IIP)1 /p  1 + (E Ii Z j-lla- l/r
j=jo+l

where C = C(p,r) and j is the greatest integer not exceedina 8 "13Pvr By

contraction principle we have

E III j- /acef (1 )II r = E 11 1 (i +i)-'/a T )II r "

j~ +1 O i
0

> 2"(l + j)r/ ElIA(f) Ir

0
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and clearly

E e f1Tx). < 2 E rA( r.
j=Jo+l -

We have proven the following - -.

Theorem 4.2. f E S aif and onty if f E L and the .eries

00 /a. f ) conv-/tges - L r Aor 'some (each) r > 0. Moreove4,

j=1 (E III fdMItP)11 P 
-1/ (ffli~ / Iiia di) C

c j=l

wheAe C = C(ct,p,r), p e (O,ct) and r > 0.

We shall study now the relationship between boundedness and convergence in

(4.1). In view of Proposition 4.1 this will give us an additional information

about SR. Let m(S) < ', A = a(A) and let

nn j-I/aj(j
bS B bS (S,A,m) = {f: S - B: sup I i f( If < a.s.).

n j=l

According to Proposition 4.1

S a  =S (S,A,m) {f: S B: j-l/a .f(Tj) conv. a.s.}.
j=l

a
Obviously SB c bSB. Let

~n

lflCtap = sup (E 11Y -I/- jf(Tj)il)/p for p E (0,0),
n j=l

and let

S-.... ... ... .. ... .. .....I- -- °-- ."i'i-" - .. ".. . -....... .. ...... '. . . .'.'.- " .- ..



13
n

Ilfi lo sup E (II i j- / f(T) A I).

n j=l J

It is standard to check that H I , is a complete F-norm on bSO as well as

on S Moreover, by Proposition 4.1 all the F-norms II I are eouivalent

on S ,  E O,c).

Lemma 4.3. FoA eveAy f E bS and p E (0,) [If Il < -. Mo'eovelt

bSa c La.

Proof. Without loss of generality we may assume that B = C[0,l]. Let

P k} be a sequence of finite rank operators on B with H PkII < 1 and such that

Pkx x for every x E B. Put fk(s) = Pkf(s), s E S. Clearly

n
sup j I/1' Ejfk(T<) - a.s. for every k and since dim PkR < - the
n j=l

series l j-l / E. fk(t.) converges a.s. By Proposition 4.1 fk C S B"

j=l

Since II IIc,0 and II 1 are equivalent on SB there exists c > 0 such that
eey E with I I < cicef..

jI qjj~itp < 1 for every g E SB  .. jj ,0_ < bS there exists

6 > 0 such that 116flia,O < e. Therefore 16fk1lao < c for every k and

b s< 1. By (3.3) and Proposition 4.1 (rI16fk 1 dm)I/  <beca se k ESB 1 l'fkI lo,p _ •._

* < const 16fkI < const. Letting k-co we net I IfI1, 6p < as well as
k Ia(xpap

fr Ifl I C(dm <o.

Corollary 4.4. SB c bS c LB. Fo. ee'y p e [U,a) H a compfete

F-noum on bS as well as on SB.

Proposition 4.1 and above Corollary give the following:
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Theorem 4.5. S a i the smaUlest ceosed subs6pace of bSa containin al_

Simple functionS. In othet words f c SB  and onylq Aot eveu c > 0

and p < a ther exis6ts a simpe function f 6uch that

nEll I j-I1/aj(f f fE )( lp <C

j=l

Aor all n E IN

Remarks:

(a) For the sufficiency f need not be a simple function. It is enouqh

to have f St

(b) bS a SB provided B does not contain a subspace isomorphic to co.

Bc) t SB L provided that B is of stable type a (cf. [.18J and Lemma
) b B  B

4.3). In particular these equalities hold for a < 1 and any Banach space B.

(d) In general So' bSo Lo. Indeed, Sztencel [31] has showed that for

every a > 1 there exists a Banach space B and a sequence {Xn} c B such that

sup Ell n= 1 0x ll <- for every p < a and ai ejxj diveraes a.s., where {}-

is a sequence of i.i.d. random variables with E exp(itel) = exD(-Itla). Let M

be an SaS random measure on Borel subsets of the unit interval and with the

Lebesgue measure as the control measure. Put fn n z j=l xjI[(j-l)/n,j/nl.
Sic 1 - n } x"a Thrfe

Since L(f fndM) =  L(Z 6.0, ifnI is a bounded sequence in SB . Therefore

sup f oIlfn ladt < This yields c1  'i=lix i1 < -. Let {Ai} be a partition
* n

of [O,lj such that IA I = clix.i Ia and define gk k=l1(x /lIx It )IA and
.3 3i 3

kmo Since = = j, by Proposition 3.1 and

Ito-Nisio theorem q I SB. On the other hand k SB and by Proposition 4.1

for every n and p <

i'°i "°-o ° . . . .. . - ." o, • " , ° - °, ° - '- ° ° ' " o° ° • . .o . °, - . . ." .o .°° . . . ." . .. ' • ° . .
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E I J~lf1 E )I _ <r linf E 11 1 ) a T)i

< rn inf lgklaPp < rni inf IE 11J kHj~
kk- ~ k-ojkd j

C cP/a lrn inf E 11 k x e--l
k- j=1 3

< Const.

This proves that g EbSa.

To show that bSOL t La (in general) it is enough to choose akl and Banach

space B which is not of stable type a and does not contain any subspace

isomorphic to c. Then by (b) bSa So' and So LOL (cf. [18]).

0 B B B
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5. Modification of the kernel of a stochastic integral process.

In this section we shall study processes X(t), t E T which sample paths

X(',w) belong to a separable Banach space V(T) of functions defined on T. Let

CT be the cylindrical a-field of V(T) i.e. the smallest G-field of subsets

of V(T) such that all evaluations: 6t: V(T) - IR, where <x,6 t> = x(t),

x (; V(T), t E T, are measurable. The equality

(5.1) CT = Borel (V(T)) S

is necessary and sufficient for regarding stochastic processes with sample paths

in V(T) as Borel measurable random elements in V(T). Observe that the inclusion

CT c Borel (V(T)) implies that every evaluation 6 t is Borel measurable, and

since 6 t is linear, Banach theorem yields that 6t is continuous. Conversely, if

all evaluations 6t, t c T are continuous, then (5.1) holds. Indeed, since

evaluations separate points in V(T) one can easily deduce from Hahn-Banach . .-..

theorem (see e.g. [24], Sec.2, Chap.2) that the set W={E a 6 :a.E]R,t.ET,n>l}

is dense in [V(T)]' with respect to the weak-star topology. Since V(T) is .. -

separable, W is also sequentially weak-star dense in [V(T)]' and consequently,

every functional x' [ [V(T)]' is CT-measurable. Acain by separability of

V(T) we get that Borel (V(T)) c CT . Therefore (5.1) is equivalent to the 0

assumotion that all evaluations x - x(t) are continuous.

Theorem 5.1. Let V(T) be a 6.twabte Banach space of functions defined

on T such that aLC evaluation.s x x(t) ate continuous. Assuwe that the

SaS stochastic prtocess

X(t) jh(ts) dM(s), t E T, -
S

. . . . .. .:

: . . . . -- ' "- ' - " " " " - .- L - - : . - -- '. -" -:.'-- -
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has a modification X° with sampte path6 in V(T), where h: TxS R iz such

that h(t,.) E La(S,6(A),m) foi every te T.

Then there exists6 a Aunction h TxS * s6uch that
0

(i)o evety s E S h (.,s) V(T);

(ii) Aot every t e T h (t,,) = h(t,.) m-amost eveAywheAe on S;
0

(iii) Aok every x' c [V(T)]'

<Xo(-,W),x'> = f<h0(-,s),x'> dM(s)(w),

foA almos6t aL w E Q.

Proof. The proof is divided in three parts.

Claim 1. Assume that T is a compact metric space and V(T) = C(T) is the

space of all continuous functions on T with the supremum norm. Then the

conclusion of Theorem 5.1 is true.

Proof of claim 1. Let D be a finite subset of TxT. First we shall show

that

(5.2) smax Ih(t 1 ,s) - h(t 2 ,s)j0: (tl,t 2) D) dm(s)

< C(E max {IX(t I) - X(t 2)1P: (tlt 2) D})a/p,

where C = C(a,p) and p E (O,a).
D

Indeed, let us define an ScS random vector in PR by

Y = {(X(t I) - X(t2))}(tlt 2) ED

and consider IR as a Banach space with the norm 1ail = max{a(tl ,t2 ) J:

(tl,t2 ) e D}. Then for every b F P0 we have• -S .

p



E exp(i <Y,b>) = E exp {iy b(t1,t2) [X(tl) - X(t2 )]}

= E exp {iJ jb(tl,t 2 ) [h(tl,s) - h(t2,s)] dM(s)}is 2-29

= exp (-. l<f(s),b>la dm(s)),

where f:S + I D, f(s) = {(h(t l ,s) - h(t2,s))} (tlpt2)ED . By (2.3) we get

which yields (5.2).
Let d be a metric on T. For n=1,2,... let Tn be a finite 1/n - net in T

and let T = U Tn" Clearly T is dense in T. Define for x: T IR 6 > 0 and
n=l

- nE IN

6,n(x) = max {fx(t 1 ) - x(t2)1: t , t2 Tn, d(t1,t2) < 6}

and

i 4(x) = sup {Ix(t 1 ) - x(t2) : tl,t 2 E T, d(tl,t 2 ) < 6}.

Inequality (5.2) applied for D ={(tlt 2) E Tn Tn: d(tl,t 2 ) < 6} yields

j {',n [h(.,s)]}Q din(s)< C[ ,[X (',w)]}PdP(w)a'/P.

S

Since ,[X (-,w)] < 2 sup IX (t,w)I = 2 H1 X (',w) letting n owe obtain
6,- tT 0 0

f {c,4[h(',s)]}I dm(s) < C[J {[Xo(',w)]}PdP()]l'/P

S

and since sample paths of X are continuous we get
S0

...... ...........-.... -. . . .--. . •.... . -.-.. . .
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(5.3) lim 5 [h(-,s)] = 0

for m-almost all sES. Let sES. If (5.3) holds then h(,s) is uniformly

continuous on T and there is unique continuous function h (',s) defined on
CO 0

T which is equal to h(-,s) on T. If (5.3) fails, then we put ho0(ts) = 0

for all tcT. Therefore h (.,s) ( C(T) for all sES and h (t,.) = h(t,')

m-almost everywhere for every tcT.. By stochastic continuity of X and contin-

uity of t - h0 (t,s) for every sES we get (ii) for every tET. Clearly (iii)
n

is satisfied for all x'sof the form x' = a.6t  Since such functionals are
j=l i

sequentially weak-star dense in [V(T)] (iii) follows.

Claim 2. Assume that V(T) is a closed subspace of C(T), where T is

a compact metric space. Then the conclusion of Theorem 5.1 holds.

Proof of claim 2. By claim 1 there exists a function h such that
0

h (.,s) c C(T), (ii) and (iii) hold ((iii) for every x' E [C(T)] ). Let
a

[V(T)]' = {x' , [C(T)] <x,x'> = 0 for all x E V(T)}.

For every x' c [V(T)] ± we have

s a.s.J <h0(,s),x'>dM(s) = <X0(,),x'> = 0.

Therefore <ho(,s),x'> = 0 for m-almost every sES and every x' c [V(T)]'.

Let r be a countable weak-star dense subset of [V(T)] i. Define I

So = {sES: <h (,s),x'> = 0 for all x' E F).

Then m(S\S) = 0 and for every s 0S h (.,s) E V(T). Thus a function hI

o 0 0 L :: .:L: :

. .. I. °.
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defined by h (-,s) = h0 (.,s) for SES and h,(.,s )  0 for s J SO fulfills (i),

(ii) and (iii) of Theorem 2.1. 0

Proof of the theorem in general. Let U' E{x' [ V(T)]: Jlx'II < }.

U' equipped with the relative weak-star topology is a metrizable compact

space. Let 4: V(T) - C(U') be defined by [4)(x)j (x') = <x,x'>, x c V(T)

and x' E U'. It is easy to check that 4 is an isometric linear injection of

V(T) into C(U'). Put V(U') = (LV(T)]. Since the mapping Q D u - X (',W)EV(T)

is Borel measurable we obtain that Y: Q - V(U') defined by Y(-,w) = LX o(-,W)]

is also Borel measurable. Therefore Y(x',-), X' E U' is a stochastic process

with continuous sample paths belonging to V(U'). Let W be the set of all

linear combinations of 6 s. By the discussion preceeding Theorem 5.1, for every
k

x' c U' there exists {x'} c W n U', xn' n a such that <xx'> n>
n n njt nil n

for every x E V(T). Therefore

Y(x',') lim Y(xn , ) lim <X. 
n-xoo n-,,

k n
n

= lim a nX(tn.)
n-K j nj

k
n

lim [7 anjh(t njS] dM(s),
n-- S j=l

a.s., where the first equality holds point-wise by continuity of sample paths of
k S

Y. Thus n a nh(tnj , ,) converge in L'(S,o(A),m) to some function q(x',,) and
.n nil

we have

Y(x',.) f q(x',s) dM(s) a.s.

S
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for every x' c U'. Moreover g(a5~t.) = ah(t, °) m-almost everywhere on S,

provided a6t U'. According to claim 2 there exists q (X',s) such that

g0 (',s) E V(U') for all s E S and g0 (x',-) = g(x',') m-almost everywhere for

every x' E U'.

Define a Borel measurable function G: S - V(U') by [G(s)l(x') = o(x',s)

and H:S - V(T) by H =-loG. Let h (t,s) = <H(s),3t>. Clearly (i) is ful-

filled. To show (ii) let t e T and let a > 0 be such that a6t c U'. Since

H(s) = -l [G(s)] if and only if <H(s),x'> = q (X',s) for all x' E U' we obtain

ah o(t,s) = <H(s),a6 t> = g0 (a6t s) = g(a6ts) = ah(t,s),

where the last two equalities hold for m-almost all s E S. (ii) is Droved.

(iii) follows by the weak-star density of W in [V(T)]'. The proof of Theorem

5.1 is complete.

Corollary 5.2. Let Xo and ho be as in Theorem 5,1. Thevi the 4unction

f: S - V(T) defined by [f(s)](t) = ho(t,s) beicono to SV(T). In paPticrufa4,

fsho(.,s)1l1T)dm(s) < -. Further, fok everty c > 0 and p E (O,ot) the.e ex 6t

ainI-te seque nce {xj}j=1 c V(T) and paiAwise disjo 'nt sets Al A such

that

EX (.) - X )lip
0 £ V(T) C

where X£(t) = 1 x (t)M(Aj), t E T.

Proof. Follows by (iii) of Theorem 5.1 and Proposition 3.1.

S

:S .~ - - -1:-- -::::. .:....:- :> : :... ,: ::1 .. : ...:. :. :::-:-. ". "-" --- -- .•..---- .. :
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6. A characterization of SaS processes with absolute continuous trajectories.

A characterization of ScaS processes (1 < m < 2) with absolute continuous

samole paths in terms the so-called covariation function has been obtained by

Cambanis and Miller in [3]. We shall characterize SciS processes with above

sample path property using the representing function h. Moreover, in our

case 0 < ct < 2.

Let us recall that a function x: [a,b] - IR is absolutely continuous if

for every c > 0 there exists a 6 > 0 such that for every disjoint family

{(tk,uk)}n= of subintervals of [a,b] ,l X(Uk) - X(tk) I < i, provided

Zk=l Uk - t < (. Then x is absolutely continuous if and only if there exists

L 1l[a,b] such that

ru

x(u) = x(a) + J k(t)dt
)a

for every a < u < b. Every absolutely continuous function x is differentiable

almost everywhere and almost everywhere on [a,b]. Let ACp [a,b] be the
d-t

space of all absolutely continuous functions on [ab] whose derivatives are

inteqrable in the p-th power, p > 1.

Let

X(t) = h(t,s)dM~s), t .[a,b]
)S

be an StS process, where M is an S(xS random measure defined on a -ring of subsets

of S and with the control measure m. As before h is a deterministic function

such that h(t,.) L'(S, (,A),m) for every t La,b].

Theorem 6.1 . X , . K' w : iii Ci', Vat(: n ACP[a,b] i,!

.. ..0[. .
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(i ) vc t t [a ,b] h 0(t, )=h(t , )m-uict e lwhcn

(ii) :L1 cvcwi s S h 0 (-,s) - AC'[a,b],

(iii) 0 A0

K (b q(t,s)lPdt)L/'Pdm(s) if 0 p

Sb aa ;'( v)'du d(v) i
lg~~t~s ~ r Lg~ug s)dmdu

Ifb P

{5P (t,s)l dm(s))P dt if 1 -p

The proof of Theorem 6.1 is preceded by the lemma below which extends

Proposition 4.2 in [5], where only the case p = a has been considered. Since

we use a sim-ilar argument in all cases of p, the case p = ~is also proven here.

Lemma 6.2. Le c , t l be . .d fmme tl( ucoln va c(aue is andc

0 2. Then thc 7,'e j eC'nveIeC(, al. . and( E171'

(E I j )I P if

E \>l. P / [E (1 +-log+ ]/ if
IC E!K{

(E ~ fl/(i ~if p
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Proof. Since L(ij) = L(R) we have for every t > 0

(6.1) t- E l~ a -1 < P( [ l > tJ I / a ) < COE E woIa .

& j -

Therefore E c < is a necessary condition for the a.s. converqence of

.j- rj. The sufficiency follows from (6.1) and the following estimates for every t>O

. E(J- / L W rj I(~i <tjl/a))2 = .j-2/a E RIC 2 '(RIK < tjl/a)
3 3

= E 1 1 2  j> j~ -2/ot

j> j It)c1

(6.2)

2 +( -2/a]

=t 2 (I +2 a E

To estimate the moments of we use Corollary 3.4 in Gine and Zinn

[8] which gives

(6.3) EIjj- 1/ 1  I - E sup Ij-/ 1  p + [x E(j- 1/c (.lckI<6jl/cx)2]p/2 ,

i c C j . -i

where 6 inf {t > 0: Z P(J I > tj I / o ) < 8-132v and C C(p), p>O.

By (6.1) we cet

(6.4) 6 - (E Jja) I/a with C C(a,p).
C

To obtain bounds for the first term on the right side of (6.3) we utilize
I

....... . . .. . .. ....
...-. . .... -.. .. . . . . . . . . . . . . .
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Lemma 3.2 in [8] which yields

J

(6.5) E sup jI 1 /OLP 6P + R
c' ap

where C - C(p) and

R ,p = Z Elj-I/ jI. 3EjI > 6Jl/a)JP

= E J I Z J-p/a.

j<lE/6l,

Since for every x > 0 (1-r)- Il(xl'-r-l) < j -r < 1 + (l-r)'l(xlr-l)
J<x

O provided r I and r > 0 we get for r p/a l

R p< EJ&JP{l + (1 - pl/a)- [(I1 I ) -]}

< P + 6P-a E J10
- ac - PI I - P1 "-,l

and

R > a E J I a PaEELalp Totp F-- P a1j
,,.i• e~~~p -lo - P1 p ES

Above estimates in conjunction with (6.4) and (6.5) give

(6.6) E sup 1j-  Ip - E[JE p + (E IEja)p/a

j C

* with C = C(a,p) and p a. In the case p = a elementary inequalities

log+ x < j < + logx, x > 0 yield

J<x -



r-. -- --. - . I I- - . . .- . .. . . . - -- - - -
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E I ja log+ < R < EJIEJ (1 + log+

Using (6.4) and (6.5) we get

(6.7) E sup 1j-Ivj C E Iro (I + log+ E 1 ' "

where C = C(a).

By (6.2) for t 6 and (6.4) the second term on the right side of (6.3)

is bounded from above by C(E IKla) 1/ c with C = C(a,p). Therefore (6.6) for

p t a and (6.7) for p = a, respectively, in conjunction with (6.3) conclude

Lemma 6.2.

Proof of Theorem 6.1. Clearly ACP[a,b] is a separable Banach space with

the norm rb - Pdt) / p
. ..

xllJ = x(a)j + rb d
~Ja ~t

and the evaluations x -+ x(t) are continuous for every t E [a,b]. By Theorem

5.1 there exists a function h0 satisfying (i) and (ii) provided X has a modifica-

tion with sample paths in ACP[a,b]. Then a function f: S - ACP[a,b] defined 4.

by [f(s)J(t) = h (t,s) is Borel measurable and in view of Theorem 5.1 (iii)

and Proposition 3.1 f S. Conversely, if f c S a
ACP[a,b] AC La,b]

then fsf(s)dM(s) is a random element in ACP[a,b] such that X (t) = <fsfdM,6t>

fsho(t,s)dM(s) = X(t) a.s., i.e. Xo qives a required modification of X.

Therefore X has a modification with sample paths in ACP[a,b] if and only if

(i), (ii) and f S. Note also that without loss of aenerality we may 0
ACP[a,b]

assume that h (a,.) : 0 (replacing X by X (t) : X(t) - X(a)).
0 a

By Theorem 4.2 f Sa if and only if f L Lt and the series
ACPEa,b] ACP[a,b

... .W6 ,A A° .d

-. i- : .--i :-. -,.-..-. .... . . . . ... ..-... ..... .- -............... .-..-.... . ... ... ...... .. ? . .: .i . 2 ':" "'" '" "
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zj 1 /aE6 (T f converges in for some (each) q > 0. Here [f(s)](t)
i iACP[a,b]

h (t,s)llf(s)l l1 and
b Ah fb

lf~s)ll = lhoa's)l + ( fa -- (t's)l Pdt)I/P = (J lg(ts)lPdt)l/P,

where g(t,s) - t0 (ts). Moreover T fs are i.i.d. random elements in S such

P(T. f A) = mf(A)/mf(S), A E a(A) and dmf(s) = Ilf(s)lladm(s). We have

(6.8) mf(S) llf(s)lla dm(s) = f (Ig(ts)IPdt) '/Pdm(s)
S 

a

and mf(S) < - provided f E S Further,

n Ib nj- f f - b

I j I i(f)1P = J lE I y /f j n(t,)f( Pdt (t)dt.

j=1

Since {Un }n l is a point-wise increasing sequence of functions and for every t

n ._I/ g f f -I

un(t) > Ely -1aPgt,.[ )if l -1 1 Ddt

n j=n0

as n,no  w, by the Monotone Convergence Theorem Yj- Ejf(Tj) converqes in

LP  if and only if
ACP[a ,bj

n 1i/Ot 
.

lim Eli Y j- E.T (Tf)Hlp  < '.

n- j=l

ii ,
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Caze a < p. By Lemma 6.2

lim E j-X J- % T  M lp  Elg(t,T )Ilf(T )II-I p dt. -

n- j=l Ca

= [mf(S)]J-l  Ig(t,s)IP~lf(s)II ' p dm(s) dt [mf f(S)] f(s)ll'dm(s) 1.

aS S

Therefore the condition f E is also sufficient for f S
ACPLa,b] ACP[a,b].

Cqs a = p. By Lemma 6.2

n _.1I / a -f i p
lim ElI i j j )li
n-oo j=l

b Ig(t,s)Iamf(S)

~ [mf(S)] f g(t,s)f [1 + log+ ] dm(s) dt

a S Ilf(s)IIl'fg(t,v)l'dm

which together with (6.8) ends this proof.

C-6e a > p. By Lena 6.2

lim E 111 J-I/ jf(Tj)llPj

n-*o j1l

[ mf(S)]P/a[ I g(t,s)IO' dm(s)] p / cc dt,

a S

which in conjunction with (6.8) completes the proof of Theorem 6.1.

Remarks:

Theorem 6.1 with appropriate modifications gives conditions for paths

to have (n-1) continuous derivatives with the (n-l)th derivative in ACPLa,b].

An alternative proof of Theeorm 6.1 can be obtained by an observation

that ACPLa,b] is isomorphic with lRx LP[a,b] (x -* (x(a),x)), and bv the fact

_'.
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that a full characterization of stable measures on LP-spaces is known (see

[18], [3] and [14] for p t a and [27] for p = a). The proof given here, which

is a straightforward application of Theorem 4.2, uses the same arqument for all

cases of p and a and is self-contained.

The following result gives a full characterization of harmonizable SaS

processes with absolutely continuous sample paths. Cambanis and Miller [3],

usinq different methods, solved the case a > 1.

Corollary 6.3. Le~t M be an ScS random measuAe on the Botel o-a/geba of

P with the finite control meaure m. Then X(t) f' eitsdM(s), t c [a,b],

ha" a modification with sampte paths in ACP[a,b], I < p < , 4 and only i6

(6.9) Isla  dm(s) < =

-w

Proof. Since 2 and C are isomorphic Lemma 6.2 can be immediately

extended to the case of complex valued random. variables by considering

two-dimensional random vectors instead of real random variables. Therefore

Theorem 6.1 remains true when we replace a real valued function h by a complex

one. In our case

h(t,s) = e its and -h = iseits
tt

It is elementary to check that in all cases of p and a Theorem 6.1 yields

the same condition (6.9).

Another important class of stable processes which is disjoint from the

class of harmonizable ones (see Cambanis and Soltani [6]), is the class of

SaS processes having the moving average representation.

1.A I A.

. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .

-, ~~~~~~~~~~~ ~~. . '--.. .. .-. .-. ......-.. ' .- / --. '- .. ' ' .... . . -i.i...... . . ..... . •i ..
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Corollary 6.4. Let k: R R be an absolutety continuous function on

every finite intervat and 6uch that fc00 Ik(s)lads < Let

X(t) : f_ k(t-s)dM(s), t IR, where M Z6 an SaS kandom measure defined om

Bortel bounded subs6ets o6 R with the Lebesgue mea.u're as the control mea.6ue.

Then X has a modification with sample paths in ACPLa,b] AoA every •

- < a < b < - if and only i6

J0 (kp (u))adu < if a < p
bc I dk

rl dk dkL
I C- - (1 + log+ _ s+t) ) dsdt <c if a p

0)J-OCO a

and

a
Ikl ds <o ifa > p,
ds I

-CO

u+lI

where kp(U) = j, ds) u I.

Proof. Since X is a strictly stationary process it is enough to show

that {X(t): t c [0,1]} has a modification with sample paths in ACP[a,b] if and

only if the above conditions hold. Define ho (t,s) = k(t-s), t,s E R . Then
A dk Q h

y t (ts) = d (t-s) and it is easy to check that the condition Q(3tP) <

is equivalent to the above conditions for k.

° o° °,"O, oO•-o• " . ... . .... / °, , . .° ° ° - - . . .. - . o .o -. . .. . . . . . . . . . . . . . ,
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7. Bounds for moments of a double a-stable stochastic integral.

Let h:[O,l] x [0,1] -+ JR be a jointly measurable function such that

h(t,s) = 0 for s > t. Let M be an SaS random measure on the Borel a-algebra

of [0,1].

McConnell and Taqqu [20] have proved that a double stochastic integral

(7.1) J(h) = h(ts)dM(s)dM(t)

00

exists as the limit in LP (p < a) of integrals of "dyadic" functions if and

only if

(7.2) P{ I 0h(t,s)dM(s)Ia dt < I} = 1

and in this case

(7.3) (EIJ(h)IP)1/p pa,p(h),
Cas

where p (h) E[0 0h(ts)dM(s) 1adt]P/a}I/P

C = C(a,p) and p < a. Moreover, pp is a complete norm (quasi-norm if p < 1)

on the space of all functions h such that J(h) exists.

At the same time Rosinski and Woyczynski [27] studied double a-stable

integrals as iterated Ito-type stochastic integrals and proved that the

finiteness of
= Ill h(t,s) Ia lh(u,v)IO dudv -]ts

(7.4) Na(h) 0 Joh(ts)Ja[l + log+ ad- ]dt ds
00 f 11h(t,v)Jladv f I h(u,s)Jad

is necessary and sufficient for the existence of J(h) in this sense. They

have proved also the equivalence of (7.2) and N (h) < . This shows, in

::-- . . .... ... -":- :-:". .. . . . . .. .
. . . * * :. . * *



32

particular, that both approaches to define a double o-stable integral are

equivalent.

A natural problem which arises here is the relation between the norm

p and the functional N . We shall prove that p -Na, where C = C(a,p).

a~pa 0a9pa

This in conjunction with (7.3) yields definitive bounds for moments of J(h).

2Let now h: [O,l] R P be a jointly measurable function such that for every

t E L0,1] h(t,') e @[O,l]. By Proposition 6.1 in [27]

1
X(t) = J h(t,s)dM(s), t E [0,1]

0

can be defined as a measurable stochastic process and by (7.2) X(-.,w) L'[0,1] for

almost all w. Therefore, fo folh(t,s)lads dt < (cf. [28]).

The lemma below justifies the interchanging of stochastic and usual

integration and for the case a > 1 has been proved in L4] (Theorem 4.6) and

in [20], Lemma 4.4. We give here a simpler and shorter proof of this result.

I

Lemma 7.1. Let a > 1 and Zet h and X be as above. Then for eveAy

La [0,1], (1-+ 1

(7.5) f 1(t)X(t)dt = O[f4(t)h(ts)dt]dM(s) a.s.
0o 0 

Proof. Let {U.} be a sequence of i.i.d. random variables uniformly

distributed in [O,1] and defined on an auxiliary probability space (Q',P'), P

so that {Uj} is independent of {X(t): t c [0,l]1. For every fixed to E s.

such that X(*,w) c La[O,lJ random variables ' D w' - (Uj(')X(U('5 "),W)

are i.l.d. and E' l (Uj)X(U.,w)l = l(t)X~t)ldt < . Therefore Kolmogorov's

. . . .. . .
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SLLN yields the P'-a.s. convergence:

I n
n I XUw -~ Ec(UI(t)w) X(t,ui)dt.

By Fubini's theorem, for almost all W' E I

i n
(7.6) n ( q (.W))X(U.(', + (t)X(t)dt

P-a.s. on Q2.

Define now i.i.d. random elements Y. 2'- LO'[0,1] by [Y.(']s

= ( q(U(w'))h(U .(w'),s). Then

EIIY~f I ci. = 1(t~h(t,.)II dt

() J £ (tflc' jh(t,s)I"'s]l/ dt

0 0

MI~) Jr1 jh(t,s)I' ds] 1/a dt

0 0

l ( t) 1 0" dt' i/ 0" ( s) ct d s t l 0

< 0 0 0

By SLLN in La[O,l]

jjV. j E'Yl 'q(t)h(t,.)dt
n 0

P'-a.s. Therefore for almost all W' E Q
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1 n [1 1 n

nY I(U.(w'))X(U.(w'),-) In s (Uj(,'))h(U (w'),s)]dM(s) :
j=1 0

(7.7)

= [ Y .(w')]dM 1 [J(t)h(ts)dt]dM(s).

0 0 0

Since there exists Q' Q' for which both (7.6) and (7.7) hold the proof is

comal ete.

Corollary 7.2. Lct h: [0,1] 2 _,IR akid X b, cis iii Lemma 7.1. Tj'i thc,

f: [0,1] - L"[O,1] dc ined bt [f(s)](t) = h(t,s) bcefii. tc S a:d

L[0, 1]
00X = JO'f(s)dM(s), a.s.

Proof. By (7.5) for every ( c (k [O,l)' <X > f = <fl a.s.
0o

Thus Proposition 3.1 completes the proof.

Theorem 7.3. Let 1 < 2 ,md p < a. Thcoi tlz.ee !x&st C = C(cx,p)

(EIJ(h)!P ) I/p  N (h).L

Proof. In view of (7.3) it is sufficient to prove PCXp C Nn. By

Corollary 7.2 and Theorem 4.2

(h) = [E('X(t) dt)I/] 1/p  )l/P (llFfdMHL , 1O

'0 L'[0,1] )0 L"[0,l ]

df s s' ds I l 1 !  j-I/, f]( l )l/o,

C O L'[0.1] il L[ -0,

-,
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1 , _ 1 lx

Here fIlf(s)IH'- ds : f0f0Ih(t,s)I dtds and by Lemma 6.2
L[[0,1]

E j - C- jT )11 = E fo Y j-I lljf(T )IF -I  I h(t,T )I'dt

,1 I I1 cxL

(f -(t cdt dh(th)

whic fiise the~ prof

kolef(u)-I wu l t(tg Id + log+ Sat atC JOL [0,1] Ellf(i) W -U lh(t,. f)I (

C [0, 1

= h(t,s,, dt ds) Nx(h

which finishes the proof.
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